If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(H)=-16H^2+40H+72
We move all terms to the left:
(H)-(-16H^2+40H+72)=0
We get rid of parentheses
16H^2-40H+H-72=0
We add all the numbers together, and all the variables
16H^2-39H-72=0
a = 16; b = -39; c = -72;
Δ = b2-4ac
Δ = -392-4·16·(-72)
Δ = 6129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6129}=\sqrt{9*681}=\sqrt{9}*\sqrt{681}=3\sqrt{681}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-39)-3\sqrt{681}}{2*16}=\frac{39-3\sqrt{681}}{32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-39)+3\sqrt{681}}{2*16}=\frac{39+3\sqrt{681}}{32} $
| -6(p+2)=-66 | | (4x+12)-(x-1)=64 | | -4(-10+10v)+10v=0 | | -13=n/14 | | -5/3r-2r=11/9 | | 8x-48=9x+144 | | 4.4x-16.8=-3.6 | | 1x-2x=3x-5 | | 5y-8+2y+1=180 | | 3(g-1)=g+5 | | 645.45=39x+99.45 | | 18=4(x-5) | | 18=4(x-5( | | 5x+8-3x=6 | | 9x-6-7x=-2 | | 9.5+x=14.2 | | 8(s+2)=48 | | 2w3=12+2w7 | | 2(4x-1)=3(2x+3) | | 8(9x-21)=1 | | 7x+2=12+15 | | 3/4n+18=51 | | -x+10+3x-15=2 | | -72=-9(q+94) | | 200=10x-3.53x+115 | | -5k+10=-2k-14 | | 9x-16=3x=2 | | -8x+12+10x-23=-6 | | 112=-7v | | 74=8+6u | | 7(1-x)=-4~11 | | x/1.2=8.6 |